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(0, 2) Pál-type Interpolation:
A General Method for Regularity

Marcel G. de Bruin and Detlef H. Mache

Abstract. The methods of proof of regularity for interpolation problems often
are dependent on the problem at hand. In case of given pairs of node gen-
erating polynomials the method of deriving an ordinary differential equation
for the interpolating polynomial or that of exploiting the specific form of the
node generator have mainly been used up to now.
Recently another method was used in the case of Pál-type interpolation where
‘only’ one of the node generators is fixed in advance: a ‘general’ method of
deriving a companion generator that leads to a regular interpolation problem.
Using (0, 2) Pál-type interpolation, it is shown that each of the methods has
its merits and for sake of simplicity we will restrict ourselves to the case
that the nodes are the zeros of pairs of polynomials of the following form:
{p(z)q(z), p(z)} with p, q co-prime and both having simple zeros.
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1. Introduction

The study of Hermite-Birkhoff interpolation is a well-known subject (cf. the ex-
cellent book [2]). Recently the regularity of some interpolation problems on non-
uniformly distributed nodes on the unit circle has been studied.

Along with the continuing interest in interpolation in general, a number of
papers on Pál-type interpolation have appeared, cf. [3], [4], [6].

In this paper the attention will be focused on so-called (0, 2) Pál-type inter-
polation problems on the pair of node generators {p(z)q(z), p(z)}:

– given two co-prime polynomials p(z) resp. q(z), with simple zeros {zi}ni=1 ∈ C

resp. {wj}mj=1 ∈ C (nodes generators),

– given data {ci}n+m
i=1 , {dj}nj=1 ∈ C,

find Pk ∈ Πk, k = m + 2n− 1 with Pk(zi) = ci (1 ≤ i ≤ n), Pk(wj) = cn+j (1 ≤
j ≤ m) and P ′′

k (zi) = di (1 ≤ i ≤ n).
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Here Πk is the set of polynomials of degree at most k with complex coefficients.
This type of interpolation problems started with the paper [1] by L.G. Pál in 1975.

Although very often the method of proof of regularity depends on the problem
at hand, one can, nevertheless, distinguish two main tools as indicated in [5]:

A. Prove that the square system of homogeneous linear equations for the un-
known coefficients of the polynomial Pk has a non-vanishing determinant.

B. Find a differential equation for Pk (or for a factor of Pk) and show that if
this equation has a polynomial solution, the solution must be the trivial one.

Recently a new method has been introduced by the authors in [7] for (0, 1) Pál-type
interpolation:

C. Given p(z) ‘only’, apply a ‘reduction method’ and determine ‘companion
polynomial(s)’ q(z) that make the problem regular.

The layout of the paper is as follows: in section 2 general results for method C will
be given, followed in section 3 by new results on (0, 2) Pál-type interpolation. In
section 4 the general theorems from section 2 will be proved and in section 5 the
proofs for the new examples will be given, using each of the methods A, B and C,
along with a discussion of the relative merits of the three methods. Finally some
references will be given.

2. General results for method C

Consider the node-generating polynomials

p(z) =
n∏

i=1

(z − zi) (1)

and

q(z) =
m∏

j=1

(z − wj), (2)

co-prime and each having simple zeros.

Remark. It is not allowed that p and q have (a) common zero(es).

We then have the following result

Theorem 2.1. If there exist polynomials g(z), r1(z), r2(z) such that

2p′(z)q(z) = (α0 + α1z)g(z) + r1(z)p(z), (3a)

p′′(z)q(z) + 2p′(z)q′(z) = β0g(z) + r2(z)p(z), (3b)
satisfying the condition

α0 + α1z �≡ 0, g(zi) �= 0, 1 ≤ i ≤ n, (4)

then (0, 2) Pál-type interpolation on the zeros of {p(z)q(z), p(z)} is regular
1. for α1 = 0 if and only if β0 �= 0,
2. for α1 �= 0 if and only if −β0/α1 �∈ {0, 1, 2, . . . , n− 1}.
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Remark. The case α0 = α1 = 0 leads to a contradiction with (3a) as the zeros of
p are simple and the polynomials p, q are co-prime.

More general, using simple conditions on the factors of g(z) from (5a), (5b):

Theorem 2.2. If there exist polynomials g(z), r1(z), r2(z) such that

2p′(z)q(z) = (α0 + α1z + α2z
2)g(z) + r1(z)p(z), (5a)

with α0 + α1z + α2z
2 having two different (complex) roots σ1, σ2, and

p′′(z)q(z) + 2p′(z)q′(z) = (β0 + β1z)g(z) + r2(z)p(z), (5b)

satisfying the conditions
g(zi) �= 0, 1 ≤ i ≤ n, (6)

and

A :=
β0 + β1σ1

σ1 − σ2
> 0, B :=

β0 + β1σ2

σ2 − σ1
> 0, (7)∫ σ2

σ1

(ζ − σ1)A−1(ζ − σ2)B−1p(ζ)dζ �= 0, (8)

then the (0, 2) Pál-type interpolation problem on the zeros of {p(z)q(z), p(z)} is
regular.

3. New regular problems

In this section some new results on regularity are given.

Theorem 3.1. The (0, 2) Pál-type interpolation problem on the zeros of the pair
{p(z)q(z), p(z)}, with p, q co-prime and having simple zeros, is regular for the
following choices of the node generators:

1. p(z) = zn − αn, α �= 0; q(z) = z, n ≥ 1.
2. p(z) = zn − αn, α �= 0; q(z) = zn − βn, β �= 0 and{

αn �= βn for n = 1,

αn �= βn, (3n + 2k − 1)αn �= (n + 2k − 1)βn for n ≥ 2.

3. p(z) = zn − αn, q(z) = (zkn − αkn)/(zn − αn), α �= 0, k ≥ 2.
4. p(z) = zn − αn, q(z) = z(z − z0)(zn − 3n+1

n+1 αn) with

α, z0 �= 0; z0 �= α exp (
2πik

n
), k = 0, 1, . . . , n− 1; zn

0 �=
3n + 1
n + 1

αn.

5. p(z) = zn − αn, q(z) = z(z2 − ξ2)(zn − 3n+1
n+1 αn) with

α, ξ �= 0; ξ2 �= α2;

{
ξn �= ±αn, ± 3n+1

n+1 αn for n odd,

ξn �= αn, 3n+1
n+1 αn, (n + 1)αn for n even.
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4. Proofs for method C

The interpolation problem has been formulated in the introduction as:

– given polynomials p(z) and q(z) of degrees n and m,
– with simple zeros zi, wj , respectively, all different,
– find a polynomial P (z) of degree at most n + m− 1 with

P (zi) = P (wj) = 0, P ′′(zi) = 0. (9)

Because of the first two sets of conditions in (9), we can write

P (z) = p(z)q(z)Q(z), degreeQ(z) ≤ n− 1. (10)

The final conditions of (9) then lead to

2p′(zi)q(zi)Q′(zi) + {p′′(zi)q(zi) + 2p′(zi)q′(zi)}Q(zi) = 0, (11)

with zi the n zeros of p(z).

Proof of Theorem 2.1. Inserting (3) into (11) and using (4) we find

(α0 + α1zi)Q′(zi) + β0Q(zi) = 0, 1 ≤ i ≤ n. (12)

Because of the degree restriction on Q, at most n− 1, this immediately implies

(α0 + α1z)Q′(z) + β0Q(z) = 0. (13)

Solving this linear first order ordinary differential equation for the cases α1 = 0
(distinguishing α0 = 0 or α0 �= 0) and α1 �= 0, we find that Q(z) has to be
identically zero under the condition stated in the theorem (α1 �= 0 was the only
case that (13) really had a non-trivial polynomial solution of degree at most n−1;
that is where −β0/α1 �∈ {1, 2, . . . , n− 1} comes in). �

Proof of Theorem 2.2. Proceeding as in the previous proof, but now the degree of
the polynomial on the left-hand side of the equation could be equal to the degree
of p(z) ,we arrive at the differential equation

(α0 + α1z + α2z
2)Q′(z) + (β0 + β1z)Q(z) = Cp(z) (14)

for the polynomial Q of degree at most n − 1. The equation (14) can be solved
with an integrating factor µ(z) following from

µ′(z)
µ(z)

=
β0 + β1z

α0 + α1z + α2z2

and we find

(α0 + α1z + α2z
2)Q(z) = C

∫ z

σ1

(ζ − σ1)A−1(ζ − σ2)B−1p(ζ)dζ + D. (15)

Now the left-hand side has a zero for z = σ1 and z = σ2; the first gives D = 0
and the second, in view of the condition stated in (8), that C = 0. Thus Q ≡ 0,
implying P ≡ 0. �
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5. Proofs for the new regular problems

The five cases of theorem 3.1 will each be proved using each of the methods A, B
and C.

5.1. Method A

Proof of 1. The interpolating polynomial has degree at most 2n; write

P (z) =
n−1∑
k=0

akzk +
n−1∑
k=0

bkzn+k + cz2n.

This has to vanish at the n zeros zj of zn − αn:
n−1∑
k=0

(ak + αnbk)zk + cα2n = 0,

leading to a polynomial of degree at most n− 1 having n zeros, thus:

a0 + αnb0 + α2nc0 = 0, (16a)

ak + αnbk = 0, 1 ≤ k ≤ n− 1. (16b)

The condition P (0) = 0 implies:
a0 = 0. (17)

As the derivative only has to be looked at in the points zj �= 0, we can as well put
z2

j P ′′(zj) = 0:

n−1∑
k=0

{k(k − 1)ak + (n + k)(n + k − 1)αnbk} zk + 2n(2n− 1)α2nc = 0,

which implies
n(n− 1)αnb0 + 2n(2n− 1)αnc0 = 0, (18a)

k(k − 1)ak + (n + k)(n + k − 1)αnbk = 0, 1 ≤ k ≤ n− 1. (18b)

The equations (16b) and (18b) immediately imply ak =bk =0 for 1 ≤ k ≤ n−1 (the
determinant of the matrix for the 2× 2 system for fixed k is n(n+2k− 1)αn �= 0).

Inserting (17) in (16a) and (18a) gives a 2 × 2 system for b0, c0 with deter-
minant n(3n− 1)α3n �= 0, leading to b0 = c0 = 0 and thus P ≡ 0. �
Proof of 2. This time the interpolating polynomial has degree at most 3n− 1 and
we write

P (z) =
n−1∑
k=0

(
ak + bkzn + ckz2n

)
zk

This has to vanish at the zeros of both zn − αn and zn − βn; as in the previous
proof, we find

ak + αnbk + α2nck = 0, 0 ≤ k ≤ n− 1, (19a)

ak + βnbk + β2nck = 0, 0 ≤ k ≤ n− 1. (19b)
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Moreover, the second derivative of P has to vanish in the zeros of zn − αn and,
looking at z2P ′′(z) as before, we find

k(k−1)ak +(n+k)(n+k−1)αnbk +(2n+k)(2n+k−1)α2nck = 0, 0 ≤ k ≤ n−1.
(20)

Combining (19) and (20), we see that the triple {ak, bk, ck} satisfies, for each fixed
k from {0, 1, . . . , n− 1} the linear system

Ak

⎛⎝ak

bk

ck

⎞⎠ =

⎛⎝0
0
0

⎞⎠
with

Ak =

⎛⎝ 1 αn α2n

1 βn β2n

k(k − 1) (n + k)(n + k − 1)αn (2n + k)(2n + k − 1)α2n

⎞⎠ .

As
detAk = nαn(βn − αn) [(3n + 2k − 1)αn − (n + 2k − 1)βn] �= 0,

we conclude that, given the conditions, the system has the trivial solution only. �

Proof of 3. In this case we incorporate the node generator zkn−αkn in the definition
of the interpolating polynomial:

P (z) =
kn−1∑
j=0

(
aj + bjz

kn
)
zj

with bj = 0 for n ≤ j ≤ kn−1. Using the method as in the previous cases, we find

aj + αknbj = 0, 0 ≤ j ≤ kn− 1.

Combining this with the known values for the bj , this leads to aj = 0 for n ≤ j ≤
kn− 1; thus the interpolating polynomial reduces to

P (z) =
n−1∑
j=0

(
aj + bjz

kn
)
zj

with
aj + αknbj = 0, 0 ≤ j ≤ n− 1. (21)

Just as in the previous cases, the conditions z2
j P ′′(zj) = 0 give

j(j − 1)aj + (nk + j)(nk + j − 1)αknbj = 0, 0 ≤ j ≤ n− 1. (22)

Combination of (21) and (22) leads, for each fixed j in the range, to a system with
non-vanishing determinant [here knαkn(kn + 2j − 1)]. �

Proof of 4. and 5. It is quite obvious that the method used in the previous proofs
does not lead to a ‘linear algebra’ problem that can be managed so easily. �
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5.2. Method B

Proof of 1. Put
P (z) = z(zn − αn)Q(z)

with deg Q ≤ n− 1. Inserting the zeros zj of zn − αn in the second derivative, we
find

0 = P ′′(zj) = 2nzn
j Q′(zj) + n(n + 1)zn−1

j Q(zj).

Dividing by zn−1
j �= 0, we see that the polynomial

zQ′(z) +
n + 1

2
Q(z),

which is of degree at most n− 1, has n zeros. Therefore it satisfies

zQ′(z) +
n + 1

2
Q(z) = 0.

This differential equation has the solution Cz−(n−1)/2: for n ≥ 2 the only polyno-
mial solution is the trivial one. Moreover, from the method of proof it is clear that
in the case n = 1 we do not find a differential equation, but just Q(α) = 0 with Q
a constant: Q ≡ 0. �
Proof of 2. This time we put

P (z) = (zn − αn)(z − βn)Q(z) with deg Q ≤ n− 1.

Inserting the zeros zj of zn − αn in the second derivative, we find

0 = P ′′(zj) = 2nzn−1
j Q′(zj) + {n(n− 1)zn−2

j (αn − βn) + 2n2zn−2
j }Q(zj),

and after simplification

zjQ
′(zj) +

(3n− 1)αn − (n− 1)βn

2(αn − βn)
Q(zj) = 0.

Dropping the index on z we again arrive at a polynomial having more zeros than its
degree, showing that Q satisfies a simple linear, homogenous differential equation
of order 1. The solution can be written as

Q(z) = Ce−ξz, C ∈ C, ξ =
(3n− 1)αn − (n− 1)βn

2(αn − βn)
.

Under the conditions on α, β given in the theorem, Q never reduces to a polynomial
of degree at most n− 1: the problem is regular. �
Proof of 3. Now the interpolating polynomial is determined by

P (z) = (zkn − αkn)Q(z) with degQ ≤ n− 1.

As in the previous proofs, the interpolation conditions for the second derivative
lead to an ordinary differential equations for Q:

zQ′(z) +
kn− 1

2
Q(z) = 0.

Just as in the proof for case 1. this leads to Q ≡ 0. �
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Proof of 4. Put

P (z) = z(z − z0)(zn − αn)(zn − 3n + 1
n + 1

αn)Q(z)

with deg Q ≤ n− 1. Proceeding as before, we find after simplification

(zj − z0)Q′(zj) + Q(zj) = 0, 1 ≤ j ≤ n.

Again the number of zeros implies a differential equation

(z − z0)Q′(z) + Q(z) = 0

which can be integrated immediately: (z − z0)Q(z) = C, showing that Q ≡ 0.
The conditions on α, z0 ensure that p(z) and q(z) have simple zeros only. �

Proof of 5. Now

P (z) = z(z2 − ξ2)(zn − αn)(zn − 3n + 1
n + 1

αn)Q(z)

with deg Q ≤ n− 1. Proceeding as in 4. the differential equation for Q turns out
to be

(z2 − ξ2)Q′(z) + 2zQ(z) = C(zn − αn)
as the degree on the right-hand side is equal to the number of zero conditions.

Solving this equation we find

(z2 − ξ2)Q(z) = C

∫ z

0

(t(n− αn)dt + D = Cz

(
zn

n + 1
− αn

)
+ D.

As the left-hand side has a zero for z = ±ξ, this leads to a 2 × 2 system for the
unknown constants C, D with determinant

ξ

[
{1 + (−1)n} ξn

n + 1
− 2αn

]
and the conditions on α, ξ ensure that this system has the trivial solution only. �

5.3. Method C

Proof of 1. The choices

α0 = 0, α1 = 2n, β0 = n(n + 1), r1(z) = −2nz, r2(z) = −n(n + 1),

leading to g(z) = zn +zn−1−αn show that the conditions (3) and (4) are satisfied;
thus the case α0 = 0, β0 �= 0 applies. �
Proof of 2. The case n = 1 can be resolved using

α0 = −2β, α1 = 2, β0 = 2, r1(z) = −2(z − β), r2(z) = −2

leading to g(z) = z − α + 1.
For n ≥ 2 take:

α0 = 0, α1 = 2(αn − βn), β0 = (3n− 1)αn − (n− 1)βn,

r1(z) = 2nzn−1, r2(z) = n(3n− 1)zn−2

leading to g(z) = nzn−2. �
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Proof of 3. Use

α0 = 0, α1 = 2, β0 = nk − 1, g(z) = nkznk−2

and

r1(z) =
[
2nzn−1 zkn − αkn

zn − αn
− 2knzkn−1

]
/(zn − αn),

r2(z) =
[
n(n− 1)zn−2 zkn − αkn

zn − αn
+ 2nzn−1×

× d
dz

(
zkn − αkn

zn − αn

)
− kn(kn− 1)zkn−2

]
/(zn − αn).

The conditions are easily checked. �
Proof of 4. Choose

α0 + α1z = z − z0, β0 = 1, r1(z) = −2nzn z − z0

z0
, r2(z) = −2nzn−1 z − z0

z0
.

The conditions follow from the requirements that p and q are co-prime and
have simple zeros and from the condition (4) for

g(z) = nz
{
(3n2 + 4n + 1)z2n − (3n2 + 2n− 1)z0z

2n−1 (23)

− (3n2 + 4n + 1)αnzn + (3n2 − 2n− 1)z0α
nzn−1

}
/((n + 1)z0). �

Proof of 5. The proof uses

α0 + α1z + α2z
2 = z2 − ξ2, β0 + β1z = 2z,

r1(z) = −n(3n + 1)zn(z2 − ξ2)2/(2ξ2), r2(z) = −n(3n + 1)zn−1(z2 − ξ2)2/ξ2

and g(z) given by

n[(3n2 + 4n + 1)(zn − αn)zn+2 + ξ2zn
{
(3n2 − 8n− 3)αn − 3(n− 1)zn)

}
]

2(n + 1)ξ2
.

The conditions a.o come in to ensure that q has simple zeros. The condition (6) is
automatically satisfied because g(zj) = −4n2α2n/(n + 1).

The condition (8), in the integral A = B = 1, is automatically satisfied for n
odd and leads to ξn �= (n + 1)αn for n even. �

Discussion

From the proofs it has become clear that method A necessitates a very special form
for the node generating polynomials, while method B depends on the possibility of
degree reduction in order to find a differential equation that can be solved without
too many difficulties.

The fact that there does not appear to be much difference between the ap-
plicability of the methods B and C lies in the fact that both methods exploit the
method of reducing the differential equation for the intermediary Q to a simple
one.
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The advantage of method C then lies in the fact that it enables one to find
‘companion’ node generating polynomials q(z) to a given node generating polyno-
mial p(z) that lead to a regular (0, 2) Pál-type interpolation problem on the nodes
{p(z)q(z), p(z)}.
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